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INVESTIGATION OF CURRENT DENSITIES PRODUCED BY SURFACE
ELECTRODES USING FINITE ELEMENT MODELING AND CURRENT
DENSITY IMAGING

A. Patriciu', T. P. DeMonte”, M. L. G. Joy?, J. J. Struijk’

' Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark
* Institute of Biomaterials and Biomedical Engineering,University of Toronto, Toronto, Canada

Abstract — Designers of gel-type surface electrodes, used in
medical applications such as pain relief and neuromuscular
stimulation, require a more thorough understanding of current
pathways in tissue in order to design more effective electrical
stimulation systems. To investigate these pathways, a finite
element model (FEM) was used to compute current density
distributions produced by an electrode placed on the surface of
a homogeneous, tissue-mimicking gel slab. The gel slab phantom
was constructed and the current densities were measured using
a recently developed technique called current density imaging
(CDI). CDI uses the phase data produced by magnetic
resonance imaging (MRI) as a measure of the magnetic fields
produced by the externally applied current. The results of the
FEM simulation and CDI measurements compare well. CDI
has several potential advantages over conventional FEM
techniques including: no requirement for knowledge of local
tissue conductivities, low and constant computationgl overhead
regardless of tissue complexity, and the potential to ]jierform in-
vivo measurements.

Keywords — Surface electrode, modeling, finite element method,
current density imaging

I. INTRODUCTION

Surface electrodes are flexible pads placed on the skin that
are used to inject electrical current into tissue. This electrical
current is used to activate excitable cells for medical
purposes such as pain relief and neuromuscular stimulation.
Researchers and designers of surface electrodes require a
more thorough understanding of the current pathways in
tissue to design more effective surface electrodes.

As a first step towards investigating current pathways in
tissue, two independent techniques were used to obtain
current density maps inside a tissue-mimicking gel. The first
technique employs a finite element method (FEM) to
simulate the current densities within the volume. The second
technique, called current density imaging (CDI), measures
the magnetic fields generated by the current flowing in the
tissue using magnetic resonance imaging (MRI) and
computes the current densities from these fields [1].

Presently, FEM simulations are the most common
approach to this type of problem. For an FEM simulation to
produce accurate results, local tissue conductivities must be
known or estimated. Inaccurate knowledge of these
conductivities leads to inaccurate results in field
computations. The inherent complexity of tissue makes
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FEMs computationally demanding. CDI is relatively new
technique that offers some potential advantages over FEM.
First, CDI is a measurement technique, as opposed to a
simulation, that can potentially be used in-vivo. Second, CDI
is only concerned with magnetic fields and current densities
and does not require knowledge of local conductivity.
Finally, the computational overhead of CDI, which is far less
than that of a simple FEM, remains constant regardless of the
complexity of tissue. An obvious drawback is that an MR
imager is required for CDI.

II. METHODOLOGY

Different pairs of gel-type surface stimulating electrodes
(Medicotest A/S) were applied on the top and bottom of a
tissue-mimicking homogeneous gelatin slab, placed in a
15 x 14 x 7 cm phantom (Fig. 1 ). Similar to [2] and [3], the
gel was prepared using 1.5 1 of distilled water, 200 g gelatin
(MERCK Eurolab) and 7.9 ml of formaldehyde. 3.37 g of
NaCl was added to obtain a conductivity of 0.74 S/m. The
resulting gel was homogenous with conductivity close to that
of typical soft tissue. Both electrodes were connected to an
electrical stimulator that delivers the imaging current pulses.
A special attachment (Fig. 1) was used to connect the upper
electrode in order to minimize LFCDI artifacts.

FEM Simulation

The geometry and electrical properties of the electrodes,
gel and phantom were used to simulate the CDI
measurements. The mesh was generated using OPERA-3D
[4], a commercially available software package, and TOSCA

Fig 1. Experimental setup. The arrows mark the: (A) attachment , (B)
electrode, (C) gelatin, and (D) counter electrode
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Fig.2. FEM model

as a finite element solver (Vector Fields). The solution of the
current conduction problem was obtained solving Laplace’s
equation:

V- (6VV)=0 (1)

where o is the conductivity. Current density was computed
using:

J=-oVV (2)
The boundary conditions applied to the model were no
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current in or outflow through the sidewalls of the gelatin box
and a 50 mA current was assumed through the surface of the
electrodes. This value matches the current applied during the
experiment. The model was constructed using hexahedral
elements. The generated mesh is presented in Fig. 2. Current
density (CD) values were computed at nodes that correspond
to the voxel locations in the MRI data used in the CDI
technique.

CDI Measurement

Electrical currents externally applied to a sample, during
an MRI acquisition, will generate magnetic field components
parallel to the main field, By, of the MRI system. These
components will be encoded in the phase image(s) of the

J=VxH 3)
MRI data. Cartesian expansion of Equation (3) indicates that
two orthogonal components of the magnetic field, H, are
required to compute one component of current density, J. In
practice, two orthogonal orientations of the sample are
required in the MRI system to compute one component of the
current density.

In this experiment, square current pulses of duration 24 ms
and amplitude of 50 mA were synchronized with a spin echo

CtiS

40

COVFEM Profile Comparison (3rnm, Hotizontal)
T T

35

w
=]

(8]
[5i]

5]

Current Density (Afrm?)
N
=)

o

u] 20 40 =] 80 100 120
Distance (1 unit = 1.015625 rmm)

CDIFEM Profile Comparisaon (3mm, Yertical)
T T

45 T

~)

Current Density (Nmz)
— — ma (e o) o £
o m o m o o o

m

0 20 40 EO 80 100 120
Distance (1 unit = 1.015625 mrn)

Fig 3 Current density images 3 mm below the electrode surface.
-(A) simulation, (B) CDI measurement, (C), (D) line plots across the horizontal and vertical section
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Fig 4. Current density images 13 mm below the electrode surface.
-(A) simulation, (B) CDI measurement, (C),(D) line plots across the horizontal and vertical section

MRI sequence and applied to Medicotest Type 97-2331A
electrodes. The MRI parameters were TR=1500 ms, TE=30
ms and voxel dimensions of 1.02 x 1.02 x 2 mm. The slice
planes were parallel to the surface of the electrode.

IIT RESULTS

Images of the current density component, orthogonal to the
surface of the electrode are represented for two different slice
planes, at 3 and 13 mm under the surface of the electrode.
Fig. 3A and Fig. 3B show the images generated by the FEM
simulation and the CDI measurement at a depth of 3 mm. As
a further comparison between the two techniques, horizontal
and vertical profiles were taken across these images and
plotted together in Fig. 3C and Fig. 3D respectively. Similar
images are shown for the plane at 13 mm below the electrode
surface in Fig. 4.

IV DISCUSSION

The results of the two techniques are very similar. The
peaks of the profiles are within 5 % of each other with the
FEM generally showing higher values. Integration of the

surfaces yields results that are within 10 % of each other with
the FEM generally showing higher values.

The CDI measurement technique has shortcomings that fall
under two categories: noise and artifacts. The noise is
apparent in Fig. 3B, Fig. 4B and the horizontal and vertical
profiles. To quantify CDI noise, an experiment was
performed with zero current. The measurements then showed
a standard deviation of about 1 A/m”.  Artifacts include
several of the known MRI artifacts such as susceptibility and
RF shielding as well as new artifacts associated with the CDI
technique. These new artifacts include image registration
and high phase gradients. Image registration must be
performed on a sub-pixel level in regions of high current
density gradients to obtain correct results. High phase
gradients refer to the amount of phase shift over a single
pixel in the phase image. A phase shift of more than & across
a pixel cannot be resolved properly by basic unwrapping
techniques. A phase shift of 21 across a pixel causes MRI
signal cancellation and severely degrades the MRI signal-to-
noise ratio (SNR).

The good match between the simulation and measurement
is encouraging. The experiment described in this abstract
demonstrates the potential of using CDI to measure the
effectiveness of surface electrode designs. Noise and



artifacts presently limit the technique. The artifacts discussed
above, become more severe as images are taken closer
(< 3 mm) to the surface electrode.
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